2019年4月12日澳大利亚科延大学蒋三平教授学术报告会
通讯员: 发布时间:2019-04-11 浏览量:次
学术讲座
题 目:Designing New High Temperature Polymer Electrolyte Membrane Fuel Cells for Sustainable Power Systems
报告人:蒋三平,教授,澳大利亚科延大学
时 间:2019年4月12日(上午10:00)
地 点:新化工楼D区204室
邀请人:王双印

个人简历
蒋三平教授,1981年毕业于华南理工大学材料科学与工程专业,于1987年获伦敦城市大学电化学专业博士学位。1988-1991年在英国艾塞克斯大学做博士后研究。1991-2001年为澳大利亚英联邦科技工业研究中心高级研究员,1992-1997, 参与澳大利亚燃料电池公司的组建与开发工作。2001年为南洋理工大学机械与航空学院副教授。2010年为澳大利亚科廷大学化学工程系终身教授,科廷大学燃料与能源技术研究院副院长。2016年11月被科廷大学授予约翰科廷杰出教授和终身成就奖。蒋三平教授是2016年全球高校能源科学与工程学科最具影响力的高被引的学者,2018年度科睿唯安(Clarivate Analytics)跨学科领域(cross-field category)高被引科学家。已在高水平学术期刊上发表了近400篇文章,文章总被引用率19,000次,h-因子71。另有多部知名出版社特邀专著与编写章节。他的主要研究方向为固体氧化物燃料电池、固体氧化物高温电解池、质子交换膜燃料电池、纳米结构电极、电极/电解质界面现象、高温聚物质子交换膜燃料电池、直接甲醇燃料电池、超级电容等。
Abstract
Development of reliable power sources is important for the sustainable, reliable and continuous operation of transportation, portable and various electric equipment in unmanned aircraft and field environment. Currently electric power delivery to such systems is mainly by battery packs. An alternative is to use fuel cells (FCs). FCs are electrochemical devices to convert chemical energy of fuels such as hydrogen and methanol to electricity. Methanol is an attractive fuel source because it is liquid at ambient temperature, has a much higher energy density than hydrogen and low reforming temperature (260-300 oC) due to the absence of C-C bonds. Thus, integration of methanol steam reformers (MSRs) with FCs makes it possible to continuously produce electricity in sustainable manner. The key challenge in such power system is the development of fuel cells which can be effectively operated at compatible temperature range of MSR, i.e., 260-300 oC in order to increase synergetic heat integration and system reliability, see Figure 1. Here, I will discuss the concept behind the design and development of new high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on in situ formed phosphosilicate nanoclusters. The new HT-PEMFCs show high performance, high power output and high tolerance toward CO in H2 fuels upto 12% at elevated temperatures of 200-250 oC. The results indicate that phosphoric acid doped polybenzimidazole (PA/PBI) membranes with in situ formed phosphosilicate nanocluster proton carriers show the technical feasibility in the development of integrated MSR-HT-PEMFCs for tomorrow’s sustainable power systems.
衷心欢迎广大师生参加!
衷心欢迎广大师生参加!